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Abstract—Speaker recognition (SR) is widely used in our daily
life as a biometric authentication or identification mechanism.
The popularity of SR brings in serious security concerns, as
demonstrated by recent adversarial attacks. However, the impacts
of such threats in the practical black-box setting are still open,
since current attacks consider the white-box setting only.

In this paper, we conduct the first comprehensive and sys-
tematic study of the adversarial attacks on SR systems (SRSs)
to understand their security weakness in the practical black-
box setting. For this purpose, we propose an adversarial attack,
named FAKEBOB, to craft adversarial samples. Specifically, we
formulate the adversarial sample generation as an optimization
problem, incorporated with the confidence of adversarial samples
and maximal distortion to balance between the strength and
imperceptibility of adversarial voices. One key contribution is
to propose a novel algorithm to estimate the score threshold,
a feature in SRSs, and use it in the optimization problem to
solve the optimization problem. We demonstrate that FAKEBOB
achieves 99% targeted attack success rate on both open-source
and commercial systems. We further demonstrate that FAKEBOB
is also effective on both open-source and commercial systems
when playing over the air in the physical world. Moreover,
we have conducted a human study which reveals that it is
hard for human to differentiate the speakers of the original
and adversarial voices. Last but not least, we show that four
promising defense methods for adversarial attack from the
speech recognition domain become ineffective on SRSs against
FAKEBOB, which calls for more effective defense methods. We
highlight that our study peeks into the security implications of
adversarial attacks on SRSs, and realistically fosters to improve
the security robustness of SRSs.

I. INTRODUCTION

Speaker recognition [1] is an automated technique to iden-

tify a person from utterances which contain audio charac-

teristics of the speaker. Speaker recognition systems (SRSs)

are ubiquitous in our daily life, ranging from biometric au-

thentication [2], forensic tests [3], to personalized service

on smart devices [4]. Machine learning techniques are the

mainstream method for implementing SRSs [5], however, they

are vulnerable to adversarial attacks (e.g., [6], [7], [8]). Hence,

it is vital to understand the security implications of SRSs under

adversarial attacks.

Though the success of adversarial attack on image recog-

nition systems has been ported to the speech recognition

systems in both the white-box setting (e.g., [9], [10]) and

black-box setting (e.g., [11], [12]), relatively little research

has been done on SRSs. Essentially, the speech signal of an

utterance consists of two major parts: the underlying text and

the characteristics of the speaker. To improve the performance,

speech recognition will minimize speaker-dependent variations

to determine the underlying text or command, whereas speaker

recognition will treat the phonetic variations as extraneous

noise to determine the source of the speech signal. Thus,

adversarial attacks tailored to speech recognition systems may

become ineffective on SRSs.

An adversarial attack on SRSs aims at crafting a sample

from a voice uttered by some source speaker, so that it is mis-

classified as one of the enrolled speakers (untargeted attack) or

a target speaker (targeted attack) by the system under attack,

but still correctly recognized as the source speaker by ordinary

users. Though current adversarial attacks on SRSs [13], [14]

are promising, they suffer from the following three limitations:

(1) They are limited to the white-box setting by assuming the

adversary has access to the information of the target SRS.

Attacks in a more realistic black-box setting are still open. (2)

They only consider either the close-set identification task [13]

that always classifies an arbitrary voice as one of the enrolled

speakers [15], or the speaker verification task [14] that checks

if an input voice is uttered by the unique enrolled speaker or

not [16]. Attacks on the open-set identification task [17], which

strictly subsumes both close-set identification and speaker

verification, are still open. (3) They do not consider over-

the-air attacks, hence it is unclear whether their attacks are

still effective when playing over the air in the physical world.

Therefore, in this work, we investigate the adversarial attack
on all the three tasks of SRSs in the practical black-box setting,

in an attempt to understand the security weakness of SRSs

under adversarial attack in practice.

In this work, we focus on the black-box setting, which as-

sumes that the adversary can obtain at most the decision result

and scores of the enrolled speakers for each input voice. Hence

attacks in the black-box setting is more practical yet more

challenging than the existing white-box attacks [13], [14].

We emphasize that the scoring and decision-making mech-

anisms of SRSs are different among recognition tasks [18].

Particularly, we consider 40 attack scenarios (as demonstrated

in Fig. 2) in total differing in attack types (targeted vs.

untargeted), attack channels (API vs. over the air), genders

of source and target speakers, and SR tasks (cf. §II-B). We

demonstrate our attack on 16 representative attack scenarios.
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To launch such a practical attack, two technical challenges

need to be addressed: (C1) crafting adversarial samples as less

imperceptible as possible in the black-box setting, and (C2)

making the attack practical, namely, adversarial samples are

effective on an unknown SRS, even when playing over the

air in the physical world. In this paper, we propose a practical

black-box attack, named FAKEBOB, which is able to overcome

these challenges.

Specifically, we formulate the adversarial sample generation

as an optimization problem. The optimization objective is

parameterized by a confidence parameter and the maximal

distortion of noise amplitude in L∞ norm to balance between

the strength and imperceptibility of adversarial voices, instead

of using noise model [10], [19], [20], due to its device- and

background-dependency. We also incorporate the score thresh-

old, a key feature in SRSs, into the optimization problem. To

solve the optimization problem, we leverage an efficient gra-

dient estimation algorithm, i.e., the natural evolution strategy

(NES) [21]. However, even with the estimated gradients, none

of the existing gradient-based white-box methods (e.g., [22],

[23], [10], [24]) can be directly used to attack SRSs. This is

due to the score threshold mechanism, where an attack fails

if the predicated score is less than the threshold. To this end,

we propose a novel algorithm to estimate the threshold, based

on which we leverage the Basic Iterative Method (BIM) [23]

with estimated gradients to solve the optimization problem.

We evaluate FAKEBOB for its attacking capabilities, on 3

SRSs (i.e., ivector-PLDA [25], GMM-UBM [16] and xvector-

PLDA [26]) in the popular open-source platform Kaldi [27]

in the research community and 2 commercial systems (i.e.,

Talentedsoft [28] and Microsoft Azure [29]) which are pro-

prietary without any publicly available information about the

internal design and implementations, hence completely black-

box. We evaluate FAKEBOB using 16 representative attack

scenarios (out of 40) based on the following five aspects: (1)

effectiveness/efficiency, (2) transferability, (3) practicability,

(4) imperceptibility, and (5) robustness.

The results show that FAKEBOB achieves 99% targeted

attack success rate (ASR) on all the tasks of ivector-PLDA,

GMM-UBM and xvector-PLDA systems, and 100% ASR on

the commercial system Talentedsoft within 2,500 queries on

average (cf. §V-B). To demonstrate the transferability, we

conduct a comprehensive evaluation of transferability attack

on ivector-PLDA, GMM-UBM and xvector-PLDA systems

under cross-architecture, cross-dataset, and cross-parameter

circumstances and the commercial system Microsoft Azure.

FAKEBOB is able to achieve 34%-68% transferability (attack

success) rate except for the speaker verification of Microsoft

Azure. The transferability rate could be increased by crafting

high-confidence adversarial samples at the cost of increasing

distortion. To further demonstrate the practicability and im-

perceptibility, we launch an over-the-air attack in the physical

world and also conduct a human study on the Amazon

Mechanical Turk platform [30]. The results indicate that

FAKEBOB is effective when playing over the air in the physical

world against both the open-source systems and the open-set

identification task of Microsoft Azure (cf. §V-D) and it is hard

for humans to differentiate the speakers of the original and

adversarial voices (cf. §V-E).
Finally, we study four defense methods that are reported

promising in speech recognition domain: audio squeezing [10],

[31], local smoothing [31], quantization [31] and temporal

dependency-based detection [31], due to lacking of domain-

specific defense solutions for adversarial attack on SRSs. The

results demonstrate that these defense methods have limited

effects on FAKEBOB, indicating that FAKEBOB is a practical

and powerful adversarial attack on SRSs.
Our study reveals that the security weakness of SRSs under

black-box adversarial attacks. This weakness could lead to lots

of serious security implications. For instance, the adversary

could launch an adversarial attack (e.g., FAKEBOB) to bypass

biometric authentication on the financial transaction [2], [32]

and smart devices [4], as well as high-security intelligent voice

control systems [33] so that follow-up voice command attacks

can be launched, e.g., CommanderSong [10] and hidden voice

commands [34]. For the voice-enabled cars using Dragon

Drive [33], the attacker could bypass its voice biometrics using

FAKEBOB so that command attacks can be launched to control

cars. Even for commercial systems, it is a significant threat

under such a practical black-box adversarial attack, which calls

for more robust SRSs. To shed further light, we discuss the

potential mitigation and further attacks to understand the arm

race in this topic. In summary, our main contributions are:

• To our knowledge, this is the first study of targeted adver-

sarial attacks on SRSs in the black-box setting. Our attack

is launched by not only using gradient estimation based

methods, but also incorporating the score threshold into the

adversarial sample generation. The proposed algorithm to

estimate the score threshold is unique in SRSs.

• Our black-box attack addresses not only the speaker recog-

nition tasks considered by existing white-box attacks but

also the more general task, open-set identification, which

has not been considered by previous adversarial attacks.

• Our attack is demonstrated to be effective on the popular

open-source systems and commercial system Talentedsoft,

transferable and practical on the popular open-source sys-

tems and the open-set identification task of Microsoft Azure

even when playing over the air in the physical world.

• Our attack is robust against four potential defense methods

which are reported very promising in speech recognition

domain. Our study reveals the security implications of the

adversarial attack on SRSs, which calls for more robust

SRSs and more effective domain-specific defense methods.

For more information of FAKEBOB, please refer to our

website [35] which includes voice samples and source code.

II. BACKGROUND

In this section, we introduce the preliminaries of speaker

recognition systems (SRSs) and the threat model.

A. Speaker Recognition System (SRS)
Speaker recognition is an automated technique that allows

machines to recognize a person’s identity based on his/her
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utterances using the characteristics of the speaker. It has been

studied actively for four decades [18], and currently supported

by a number of open-source platforms (e.g., Kaldi and MSR

Identity [36]) and commercial solutions (e.g., Microsoft Azure,

Amazon Alexa [37], Google home [38], Talentedsoft, and

SpeechPro VoiceKey [39]). In addition, NIST actively orga-

nizes the Speaker Recognition Evaluation [40] since 1996.

Overview of SRSs. Fig. 1 shows an overview of a typical

SRS, which includes five key modules: Feature Extraction,

Universal Background Model (UBM) Construction, Speaker

Model Construction, Scoring Module and Decision Module.

The top part is an offline phase, while the lower two parts

are an online phase composed of speaker enrollment and

recognition phases.

In the offline phase, a UBM is trained using the acoustic

feature vectors extracted from the background voices (i.e.,

voice training dataset) by the feature extraction module. The

UBM, intending to create a model of the average features of

everyone in the dataset, is widely used in the state-of-the-art

SRSs to enhance the robustness and improve efficiency [1]. In

the speaker enrollment phase, a speaker model is built using

the UBM and feature vectors of enrolling speaker’s voices for

each speaker. During the speaker recognition phase, given an

input voice x, the scores S(x) of all the enrolled speakers are

computed using the speaker models, which will be emitted

along with the decision D(x) as the recognition result.

The feature extraction module converts a raw speech signal

into acoustic feature vectors carrying characteristics of the

signal. Various acoustic feature extraction algorithms have

been proposed such as Mel-Frequency Cepstral Coefficients

(MFCC) [41], Spectral Subband Centroid (SSC) [42] and

Perceptual Linear Predictive (PLP) [43]. Among them, MFCC

is the most popular one in practice [1], [18].

Speaker recognition tasks. There are three common recogni-

tion tasks of SRSs: open-set identification (OSI) [17], close-set

identification (CSI) [15] and speaker verification (SV) [16].

An OSI system allows multiple speakers to be enrolled

during the enrollment phase, forming a speaker group G. For

an arbitrary input voice x, the system determines whether x
is uttered by one of the enrolled speakers or none of them,

according to the scores of all the enrolled speakers and a preset

(score) threshold θ. Formally, suppose the speaker group G has

n speakers {1, 2, · · · , n}, the decision module outputs D(x):

D(x) =

{
argmax

i∈G
[S(x)]i, if max

i∈G
[S(x)]i ≥ θ;

reject, otherwise.

where [S(x)]i for i ∈ G denotes the score of the voice x that

is uttered by the speaker i. Intuitively, the system classifies the

input voice x as the speaker i if and only if the score [S(x)]i of

the speaker i is the largest one among all the enrolled speakers,

and not less than the threshold θ. If the largest score is less

than θ, the system directly rejects the voice, namely, it is not

uttered by any of the enrolled speakers.

CSI and SV systems accomplish similar tasks as the OSI

system, but with some special settings. A CSI system never

rejects any input voices, i.e., an input will always be classified

as one of the enrolled speakers. Whereas an SV system can

have exactly one enrolled speaker and checks if an input voice

is uttered by the enrolled speaker, i.e., either accept or reject.

Text-Dependency. SRSs can be either text-dependent, where

cooperative speakers are required to utter one of pre-defined

sentences, or text-independent, where the speakers are allowed

to speak anything. The former achieves high accuracy on

short utterances, but always requires a large amount utterances

repeating the same sentence, thus it is only used in the SV

task. The latter may require longer utterances to achieve high

accuracy, but practically it is more versatile and can be used

in all tasks (cf. [18]). Therefore, in this work, we mainly

demonstrate our attack on text-independent SRSs.

SRS implementations. ivector-PLDA [25], [44] is a main-

stream method for implementing SRSs in both academia [27],

[45], [46] and industries [47], [48]. It achieves the state-of-

the-art performance for all the speaker recognition tasks [49],

[50]. Another one is GMM-UBM based methods, which train a

Gaussian mixture model (GMM) [16], [51] as UBM. Basically,

GMM-UBM tends to provide comparative (or higher) accuracy

on short utterances [52].

Recently, deep neural network (DNN) becomes used in

speech [53] and speaker recognition (e.g., xvector-PLDA [26]),

where speech recognition aims at determining the underlying

text or command of the speech signal. However, the major

breakthroughs made by DNN-based methods reside in speech

recognition; for speaker recognition, ivector based methods

still exhibit the state-of-the-art performance [5]. Moreover,

DNN-based methods usually rely on a much larger amount of

training data, which could greatly increase the computational

complexity compared with ivector and GMM based meth-

ods [54], thus are not suitable for off-line enrollment on client-

side devices. We denote by ivector, GMM, and xvector the

ivector-PLDA, GMM-UBM, and xvector-PLDA, respectively.

B. Threat Model

We assume that the adversary intends to craft an adversarial

sample from a voice uttered by some source speaker, so that it

is classified as one of the enrolled speakers (untargeted attack)

or the target speaker (targeted attack) by the SRS under attack,

but is still recognized as the source speaker by ordinary users.

To deliberately attack the authentication of a target vic-

tim, we can compose adversarial voices, which mimic the

voiceprint of the victim from the perspective of the SRSs.

Reasonably, the adversary can unlock the smartphones [55],
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log into applications [56], and conduct illegal financial trans-

actions [2]. Under untargeted attack, we can manipulate voices

to mimic the voiceprint of any one of enrolled speakers.

For example, we can bypass the voice-based access control

such as iFLYTEK [57], where multiple speakers are enrolled.

After bypassing the authentication, follow-up hidden voice

command attacks (e.g., [10], [34]) can be launched, e.g., on

smart car with Dragon Drive [33]. These attack scenarios are

practically feasible, for example, when the victim is not within

the hearable distance of the adversarial voice, or the attack

voice does not raise the alertness of the victim due to the

presence of other voice sources, either human or loudspeakers.

This paper focuses on the practical black-box setting where

the adversary has access only to the recognition result (deci-

sion result and scores) of a target SRS for each test input, but

not the internal configurations or training/enrollment voices.

This black-box setting is feasible in practice, e.g., the commer-

cial systems Talentedsoft [28], iFLYTEK, SinoVoice [58] and

SpeakIn [59]. If the scores are not accessible (e.g., OSI task

in the commercial system Microsoft Azure), we can leverage

transferability attacks. We assume the adversary has some

voices of the target speakers to build a surrogate model, while

these voices are not necessary the enrollment voices. This is

also feasible in practice as one can possibly record speeches

of target speakers. To our knowledge, the targeted black-box

setting renders all previous adversarial attacks impractical on

SRSs. Indeed, all the adversarial attacks on SRSs are white-

box [13], [14] except for the concurrent work [60], which

performs only untargeted attacks.

Specifically, in our attack model, we consider five param-

eters: attack type (targeted vs. untargeted attack), genders of

speakers (inter-gender vs. intra-gender), attack channel (API

vs. over-the-air), speaker recognition task (OSI vs. CSI vs. SV)

and output of the target SRS (decision and scores vs. decision-

only) as shown in Fig. 2. Intra-gender (resp. inter-gender)

means that the genders of the source and target speakers are

the same (resp. different). API attack assumes that the target

SRS (e.g., Talentedsoft) provides an API interface to query,

while over-the-air means that attacks should be played over

the air in the physical world. Decision-only attack means that

the target SRS (e.g., Microsoft Azure) only outputs decision

result (i.e., the adversary can obtain the decision result D(x)),
but not the scores of the enrolled speakers. Therefore, targeted,

inter-gender, over-the-air and decision-only attacks are the

most practical yet the most challenging ones. In summary, by

counting all the possible combinations of the parameters in

Fig. 2, there are 48 = 2 × 2 × 2 × 3 × 2 attack scenarios.

Since targeted and untargeted attacks are the same on the

SV task, there are 40 = 48 − 2 × 2 × 2 attack scenarios.

However, demonstrating all the 40 attack scenarios requires

huge engineering efforts, we design our experiments to cover

16 representative attack scenarios (cf. Appendix B).

III. METHODOLOGY

In this section, we start with the motivations, then explain

the design philosophy of our attack in black-box setting and

the possible defenses, finally present an overview of our attack.

A. Motivation

The research in this work is motivated by the following

questions: (Q1) How to launch an adversarial attack against all

the tasks of SRSs in the practical black-box setting? (Q2) Is it

feasible to craft robust adversarial voices that are transferable

to an unknown SRS under cross-architecture, cross-dataset and

cross-parameter circumstances, and commercial systems, even

when played over the air in the physical world? (Q3) Is it

possible to craft human-imperceptible adversarial voices that

are difficult, or even impossible, to be noticed by ordinary

users? (Q4) If such an attack exists, can it be defended?

B. Design Philosophy

To address Q1, we investigate existing methods for black-

box attacks on image/speech recognition systems, i.e., surro-

gate model [61], gradient estimation [62], [21] and genetic

algorithm [63], [64]. Surrogate model methods are proved to

be outperformed by gradient estimation methods [62], hence

are excluded. For the other two methods: it is known that nat-

ural evolution strategy (NES) based gradient estimation [21]

requires much fewer queries than finite difference gradient

estimation [62], and particle swarm optimization (PSO) is

proved to be more computationally efficient than other genetic

algorithms [63], [65]. To this end, we conduct a comparison

experiment on an OSI system using NES as a black-box gradi-

ent estimation technique and PSO as a genetic algorithm. The

result shows that the NES-based gradient estimation method

obviously outperforms the PSO-based one (cf. Appendix A).

Therefore, we exploit the NES-based gradient estimation.

However, even with the estimated gradients, none of the

existing gradient based white-box methods (e.g., [22], [23],

[66], [67], [10], [20], [19], [24]) can be directly used to attack

SRSs. This is due to the threshold θ which is used in the OSI

and SV tasks, but not in image/speech recognition. As a result,

these methods will fail to mislead SRSs when the resulted

score is less than θ. To solve this challenge, we incorporate the

threshold θ into our adversarial sample generation and propose

a novel algorithm to estimate θ in the black-box setting.

Theoretically, the adversarial samples crafted in the above

way are effective if directly fed as input to the target SRS

via exposed API. However, to launch a practical attack as in

Q2, adversarial samples should be played over the air in the

physical world to interact with a SRS that may differ from the

SRS on which adversarial samples are crafted. To address Q2,

we increase the strength of adversarial samples and the range

of noise amplitude, instead of using noise model [10], [19],
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[20], due to its device- and background-dependency. We have

demonstrated that our approach is effective in transferability

attack even when playing over the air in the physical world.

To address Q3, we should consider two aspects of the

human-imperceptibility. First, the adversarial samples should

sound natural when listened by ordinary users. Second, and

more importantly, they should sound as uttered by the same

speaker of the original one. As a first step towards addressing

Q3, we add a constraint onto the perturbations using L∞ norm,

which restricts the maximal distortion at each sample point

of the audio signal. We also conduct a real human study to

illustrate the imperceptibility of our adversarial samples.

To address Q4, we should launch attacks on SRSs with

defense methods. However, to our knowledge, no defense

solution exists for adversarial attacks on SRSs. Therefore,

we use four defense solutions for adversarial attacks on

speech recognition systems: audio squeezing [10], [31], local

smoothing [31], quantization [31] and temporal dependency

detection [31], to defend against our attack.

C. Overview of Our Attack: FAKEBOB

According to our design philosophy, in this section, we

present an overview (shown in Fig. 3) of our attack, named

FAKEBOB, addressing two technical challenges (C1) and (C2)

mentioned in §I. To address C1, we formulate adversarial

sample generation as an optimization problem (cf. §IV-A), for

which specific loss functions are defined for different attack

types (i.e., targeted and untargeted) and tasks (i.e., OSI, CSI

and SV) of SRSs (cf. §IV-B, §IV-C and §IV-D). To solve the

optimization problem, we propose an approach by leveraging

a novel algorithm to estimate the threshold, NES to estimate

gradient and the BIM method with the estimated gradients.

C2 is addressed by incorporating the maximal distortion (L∞
norm) of noise amplitude and strength of adversarial samples

into the optimization problem (cf. §IV-A, §IV-B, §IV-C and

§IV-D).

IV. OUR ATTACK: FAKEBOB

In this section, we elaborate on the techniques behind

FAKEBOB, including the problem formulation and attacks on

OSI, CSI, and SV systems.

A. Problem Formulation

Given an original voice, x, uttered by some source speaker,

the adversary aims at crafting an adversarial voice x́ = x+δ by

finding a perturbation δ such that (1) x́ is a valid voice [68], (2)

δ is as human-imperceptible as possible, and (3) the SRS under

attack classifies the voice x́ as one of the enrolled speakers or

the target speaker. To guarantee that the adversarial voice x́ is a

valid voice, which relies upon the audio file format (e.g., WAV,

I am Bob.
Open the

door please!

Open-set
identification

+

Original
voice

Perturbation Adversarial 
voice

Imposter

Enrolled
Speakers

Speaker t

Reject

Fig. 4: Attack on OSI systems

MP3 and AAC), our attack FAKEBOB first normalizes the

amplitude value x(i) of a voice x at each sample point i into

the range [−1, 1], then crafts the perturbation δ to make sure

−1 ≤ x́(i) = x(i) + δ(i) ≤ 1, and finally transforms x́ back

to the audio file format which will be fed to the target SRS.

Hereafter, we assume that the range of amplitude values is

[−1, 1]. To be as human-imperceptible as possible, our attack

FAKEBOB adapts L∞ norm to measure the similarity between

the original and adversarial voices and ensures that the L∞
distance ‖x́, x‖∞:= maxi{|x́(i)−x(i)|} is less than the given

maximal amplitude threshold ε of the perturbation, where i
denotes sample point of the audio waveform. To successfully

fool the target SRS, we formalize the problem of finding an

adversarial voice x́ for a voice x as the following constrained

minimization problem:

argminδ f(x+ δ)
such that ‖x+ δ, x‖∞< ε and x+ δ ∈ [−1, 1]

n (1)

where f is a loss function. When f is minimized, x + δ
is recognized as the target speaker (targeted attack) or one

of enrolled speakers (untargeted attack). Our formulation is

designed to be fast for minimizing the loss function rather

than minimizing the perturbation δ, as done in [22], [23]. Some

studies, e.g., [24], [7], formulate the problem to minimize both

the loss function and perturbation. It remains to define the loss

function and algorithm to solve the optimization problem. In

the rest of this section, we mainly address them on the OSI

system, then adapt the solution to the CSI and SV systems.

B. Attack on OSI Systems

As shown in Fig. 4, to attack an OSI system, we want to

craft an adversarial voice x́ starting from a voice x uttered

by some source speaker (i.e., D(x) = reject) such that the

voice x́ is classified as the target speaker t ∈ G = {1, · · · , n}
by the SRS, i.e., D(x́) = t. We first present the loss function

f and then show how to solve the minimization problem.

Loss function f . To launch a successful targeted attack on an

OSI system, the following two conditions need to be satisfied

simultaneously: the score [S(x)]t of the target speaker t should

be (1) the maximal one among all the enrolled speakers, and

(2) not less than the preset threshold θ. Therefore, the loss

function f for the target speaker t is defined as follows:

f(x) = max

{
(max{θ, max

i∈G\{t}
[S(x)]i} − [S(x)]t),−κ

}
(2)
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where the parameter κ, inspired by [24], intends to control

the strength of adversarial voices: the larger the κ is, the more

confidently the adversarial voice is recognized as the target

speaker t by the SRS. This has been validated in §V-C.

Our loss function is similar to the one defined in [24], but we

also incorporate an additional threshold θ. Considering κ = 0,

when (max{θ,maxi∈G\{t}[S(x)]i} − [S(x)]t) is minimized,

the score [S(x)]t of the target speaker t will be maximized

until it exceeds the threshold θ and the scores of all other

enrolled speakers. Hence, the system recognizes the voice x as

the speaker t. When κ > 0, instead of looking for a voice that

just barely changes the recognition result of x to the speaker

t, we want that the score [S(x)]t of the speaker t is much

larger than any other enrolled speakers and the threshold θ.

To launch an untargeted attack, the loss function f can be

revised as follows:

f(x) = max{(θ −max
i∈G

[S(x)]i),−κ}. (3)

Intuitively, we want to find a perturbation δ such that the

largest score of x is at least κ greater than the threshold θ.

Solving the optimization problem. To solve the optimization

problem in Eq. (1), we use NES as a gradient estimation

technique and employ the BIM method with the estimated

gradients to craft adversarial examples. Specifically, the BIM

method begins by setting x́0 = x and then on the ith iteration,

x́i = clipx,ε{x́i−1 − η · sign(∇xf(x́i−1))}
where η is a hyper-parameter indicating the learning rate,

and the function clipx,ε(x́), inspired by [23], performs per-

sample clipping of the voice x́, so the result will be in L∞
ε-neighbourhood of the source voice x and will be a valid

voice after being transformed back into the audio file format.

Formally, clipx,ε(x́) = max{min{x́, 1, x+ ε},−1, x− ε}.

We compute the gradient ∇xf(x́i−1) by leveraging NES,

which only depends on the recognition result. In detail, on the

ith iteration, we first create m (must be even) Gaussian noises

(u1, ..., um) and add them onto x́i−1, leading to m new voices

x́1
i−1, ..., x́

m
i−1, where x́j

i−1 = x́i−1+σ×uj and σ is the search

variance of NES. Note that uj = −um+1−j for j = 1, ..., m
2 .

Then, we compute the loss values f(x́1
i−1), ..., f(x́

m
i−1) by

querying the target system (m queries). Next, the gradient

∇xf(x́i−1) is approximated by computing

1
m×σ

∑m
j=1 f(x́

j
i−1)× uj .

In our experiments, m = 50 and σ = 1e−3. Finally, we com-

pute sign(∇xf(x́i−1)), a vector over the domain {−1, 0, 1},

by applying element-wise sign mathematical operation to the

gradient vector 1
m×σ

∑m
j=1 f(x́

j
i−1)× uj .

However, the BIM method with the estimated gradients

alone is not sufficient to construct adversarial samples in the

black-box setting, due to the fact that the adversary has no

access to the threshold θ used in the loss function f . To solve

this problem, we present a novel algorithm for estimating θ.

Estimating the threshold θ. To estimate the threshold θ,

the main technical challenge is that the estimated threshold θ́

Algorithm 1 Threshold Estimation Algorithm

Input: The target OSI system with scoring S and decision D modules
An arbitrary voice x such that D(x) = reject

Output: Estimated threshold θ́
1: θ́ ← maxi∈G[S(x)]i; � initial threshold
2: Δ ← | θ́

10
|; � the search step

3: x́ ← x;
4: while True do
5: θ́ ← θ́ +Δ;
6: f ′ ← λx.max{θ́ −maxi∈G[S(x)]i,−κ}; � loss function
7: while True do
8: x́ ← clipx,ε{x́− η · sign(∇xf ′(x́))}; � craft sample using f ′
9: if D(x́) �= reject then; � maxi∈G[S(x́)]i ≥ θ

10: return maxi∈G[S(x́)]i;

11: if maxi∈G[S(x́)]i ≥ θ́ then break;

should be no less than θ in order to launch a successful attack,

but should not exceed θ too much, otherwise, the attack cost

might become too expensive. Therefore, the goal is to compute

a small θ́ such that θ́ ≥ θ. To achieve this goal, we propose a

novel approach as shown in Algorithm 1. Given an OSI system

with the scoring S and decision D modules, and an arbitrary

voice x such that D(x) = reject, i.e., x is uttered by an

imposter, Algorithm 1 outputs θ́ such that θ́ ≥ θ.

In detail, Algorithm 1 first computes the maximal score θ́ =
maxi∈G[S(x)]i of the voice x by querying the system (line

1). Since D(x) = reject, we can know θ́ < θ. At Line 2,

we initialize the search step Δ = | θ́
10 |, which will be used to

estimate the desired threshold θ́. | θ́
10 | is chosen as a tradeoff

between the precision of θ́ and efficiency of the algorithm.

The outer-while loop (Lines 4-11) iteratively computes a new

candidate θ́ by adding Δ onto it (Line 5) and computes the

function f ′ = λx.max{θ́−maxi∈G[S(x)]i,−κ} (Line 6). f ′

indeed is the loss function for untargeted attack in Eq. (3),

in which θ is replaced by the candidate θ́. The function f ′

will be used to craft samples in the inner-while loop (Lines

7-11). For each candidate θ́, the inner-while loop (Lines 7-11)

iteratively computes samples x́ by querying the target system

until the target system recognizes x́ as some enrolled speaker

(Line 9) or the maximal score of x́ is no less than θ́ (Line

11). If x́ is recognized as some enrolled speaker (Line 9),

then Algorithm 1 terminates and returns the maximal score of

x́ (Line 10), as maxi∈G[S(x́)]i ≥ θ is the desired threshold. If

the maximal score of x́ is no less than θ́ (Line 11), we restart

the outer-while loop.

One may notice that Algorithm 1 will not terminate when

D(x́) is always equal to reject. In our experiments, this

never happens (cf. §V). Furthermore, it estimates a very close

value to the actual threshold. Remark that the actual threshold

θ, obtained from the open-source SRS, is used to evaluate the

performance of Algorithm 1 only.

C. Attack on CSI Systems

A CSI system always classifies an input voice as one of the

enrolled speakers. Therefore, we can adapt the attack on the

OSI systems by ignoring the threshold θ. Specifically, the loss

function for targeted attack on CSI systems with the target

speaker t ∈ G is defined as:
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TABLE I: Dataset for experiments

Datasets #Speaker Details

Train-1
Set 7,273

Part of VoxCeleb1 [69] and whole VoxCeleb2
[70] used for training ivector and GMM

Train-2
Set 2,411

Part of LibriSpeech [71]
used for training system C in transferability

Test
Speaker

Set
5

5 speakers from LibriSpeech
3 female and 2 male, 5 voices per speaker,
voices range from 3 to 4 seconds

Imposter
Speaker

Set
4

Another 4 speakers from LibriSpeech
2 female and 2 male, 5 voices per speaker,
voices range from 2 to 14 seconds

f(x) = max
{
(maxi∈G\{t}[S(x)]i − [S(x)]t),−κ

}
Intuitively, we want to find some small perturbation δ such

that the score of the speaker t is the largest one among all the

enrolled speakers, and [S(x)]t is at least κ greater than the

second-largest score.

Similarly, the loss function for untargeted attack on CSI

systems is defined as:

f(x) = max{([S(x)]m −maxi∈G\{m}[S(x)]i),−κ}
where m denotes the true speaker of the original voice.

Intuitively, we want to find some small perturbation δ such

that the largest score among other enrolled speakers is at least

κ greater than the score of the speaker m.

D. Attack on SV Systems

An SV system has exactly one enrolled speaker and checks

if an input voice is uttered by the enrolled speaker or not.

Thus, we can adapt the attack on OSI systems by assuming

the speaker group G is a singleton set. Specifically, the loss

function for attacking SV systems is defined as:

f(x) = max{θ − S(x),−κ}
Intuitively, we want to find a small perturbation δ such that the

score of x being recognized as the enrolled speaker is at least

κ greater than the threshold θ. We remark that the threshold

estimation algorithm for SV systems should be revised by

replacing the loss function f ′ at Line 6 in Algorithm 1 with

the following function: f ′ = λx.max{θ́ − S(x),−κ}.

V. ATTACK EVALUATION

We evaluate FAKEBOB for its attacking capabilities based

on the following five aspects: effectiveness/efficiency, trans-

ferability, practicability, imperceptibility, and robustness.

A. Dataset and Experiment Design

Dataset. We mainly use three widely used datasets: Vox-

Celeb1, VoxCeleb2, and LibriSpeech (cf. Table I). To demon-

strate our attack, we target the ivector and GMM systems from

the popular open-source platform Kaldi, having 7,631 stars and

3,418 forks on Github [27]. The UBM model is trained using

the Train-1 Set as the background voices. The OSI and CSI

are enrolled by 5 speakers from the Test Speaker Set, forming

a speaker group. The SV is enrolled by 5 speakers from the

Test Speaker Set, resulting in 5 ivector and 5 GMM systems.

TABLE II: Metrics used in this work

Metric Description

Attack success rate (ASR)
Proportion of adversarial voices that
are recognized as the target speaker

Untargeted success rate
(UTR) for CSI

Proportion of adversarial samples that
are not recognized as the source speaker

Untargeted success rate
(UTR) for OSI

Proportion of adversarial samples that
are not rejected by the target system

We conducted the experiments on a server with Ubuntu

16.04 and Intel Xeon CPU E5-2697 v2 2.70GHz with 377G

RAM (10 cores). We set κ = 0, max iteration=1,000, max/min

learning rate η is 1e-3/1e-6, search variance σ in NES is 1e-3,

and samples per draw m in NES is 50, unless explicitly stated.
Evaluation metrics. To evaluate our attack, we use the metrics

shown in Table II. Signal-noise ratio (SNR) is widely used to

quantify the level of signal power to noise power, so we use

it to measure the distortion of the adversarial voices [10]. We

use the equation, SNR(dB)= 10 log10(Px/Pδ), to obtain SNR,

where Px is the signal power of the original voice x and Pδ is

the power of the perturbation δ. Larger SNR value indicates

a (relatively) smaller perturbation. To evaluate efficiency, we

use two metrics: number of iterations and time. (Note that the

number of queries is the number of iterations multiplied by

samples per draw m in NES and m = 50 in this work.)
Experiment design. We design five experiments. (1) We

evaluate the effectiveness and efficiency on both open-source

systems (i.e., ivector, GMM, and xvector) and the commercial

system Talentedsoft. We also evaluate FAKEBOB under intra-

gender and inter-gender scenarios, as inter-gender attacks are

usually more difficult. (2) We evaluate the transferability by

attacking the open-source systems with different architecture,

training dataset, and parameters, as well as the commer-

cial system Microsoft Azure. (3) We further evaluate the

practicability by playing the adversarial voices over the air

in the physical world. (4) For human-imperceptibility, we

conduct a real human study through Amazon Mechanical

Turk platform (MTurk) [30], a crowdsourcing marketplace

for human intelligence. (5) We finally evaluate defense meth-
ods, local smoothing, quantization, audio squeezing, temporal

dependency-based detection, to defend against FAKEBOB.
Recall that we demonstrate our attack on 16 representative

attack scenarios out of 40 (cf. §II-B). In particular, we mainly

consider targeted attack which is much more powerful and

challenging than untargeted attack [9]. Our experiments suffice

to understand the other four parameters of the attack model,

i.e., inter-gender vs. intra-gender, API vs. over-the-air, OSI vs.

CSI vs. SV, decision and scores vs. decision-only.
The OSI task can be seen as a combination of the CSI and

SV tasks (cf. §II). Thus, we sometimes only report and analyze

the results on the OSI task due to space limitation, which is

much more challenging and representative than the other two.

The missing results can be found in Appendix.

B. Effectiveness and Efficiency
Target model training. To evaluate the effectiveness and

efficiency, we train ivector and GMM systems for the OSI,
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TABLE III: Six trained SRSs

Task Metrics ivector GMM

CSI Accuracy 99.6% 99.3%

SV FRR 1.0% 5.0%

FAR 11.0% 10.4%

OSI
FRR 1.0% 4.2%

FAR 7.9% 11.2%

OSIER 0.2% 2.8%

TABLE IV: Results of threshold estimation

ivector GMM

θ θ́ Time (s) θ θ́ Time (s)

1.45 1.47 628 0.091 0.0936 157

1.57 1.60 671 0.094 0.0957 260

1.62 1.64 686 0.106 0.1072 269

1.73 1.75 750 0.113 0.1141 289

1.84 1.87 804 0.119 0.1193 314 Fig. 5: Transferability rate vs. κ

CSI and SV tasks. The performance of these systems is shown

in Table III, where accuracy is as usual, False Acceptance

Rate (FAR) is the proportion of voices that are uttered by

imposters but accepted by the system [18], False Rejection

Rate (FRR) is the proportion of voices that are uttered by

an enrolled speaker but rejected by the system [18], Open-set

Identification Error Rate (OSIER) is the rate of voices that

cannot be correctly classified [17]. Notice that the threshold

θ is 1.45 for ivector and 0.091 for GMM, so that the FAR is

close to 10%. Although the parameter θ in SV and OSI tasks

can be tuned using Equal Error Rate, i.e., FAR is equal to

FRR, we found that the results for SV and OSI tasks do not

vary too much (cf. Table XVII in Appendix).

Setting. The parameter ε is one of the most critical parameters

of our attack. To fine-tune ε, we study ASR, efficiency and

distortion by varying ε from 0.05, 0.01, 0.005, 0.004, 0.003,

0.002, to 0.001, on ivector and GMM for the CSI task. The

results are given in Appendix C. With decreasing of ε, both

the attack cost and SNR increase, while ASR decreases. As

a trade-off between ASR, efficiency, and distortion, we set

ε = 0.002 in this experiment.

The target speakers are the speakers from the Test Speaker

Set (cf. Table I), the source speakers are the speakers, from

the Test Speaker Set for CSI, and from the Imposter Speaker

Set (cf. Table I) for SV and OSI. Ideally, we will craft 100

adversarial samples using FAKEBOB for each task, where 40

adversarial samples are intra-gender and 60 inter-gender for

CSI, and 50 intra-gender and 50 inter-gender for SV and OSI.

Note that to diversify experiments, the source speakers of CSI

and SV/OSI are designated to be different.

Results. The results are shown in Table V. Since the OSI

task is more challenging and representative than the other two,

we only analyze the results of the OSI task here. We can

observe that FAKEBOB achieves 99.0% ASR for both ivector

and GMM. In terms of SNR, the average SNR value is 31.5

(dB) for ivector and 31.4 (dB) for GMM, indicating that the

perturbation is less than 0.071% and 0.072%. Furthermore, the

average numbers of iterations and execution time are 86 and

38.0 minutes on ivector. The average numbers of iterations

and execution time are 38 and 3.8 minutes on GMM, much

smaller than that of ivector. Due to space limitation, results of

attacking xvector are given in Appendix D where we observe

similar results. These results demonstrate the effectiveness and

efficiency of FAKEBOB.

We can also observe that inter-gender attack is much more

difficult (more iterations and execution time) than intra-gender

attack due to the difference between sounds of male and

female. Moreover, ASR of inter-gender attack is also lower

than that of intra-gender attack. The result unveils that once

the gender of the target speaker is known by attackers, it is

much easier to launch an intra-gender attack.

For evaluation of the threshold estimation algorithm, we

report the estimated threshold θ́ in Table IV by setting 5

different thresholds. The estimation error is less than 0.03 for

ivector and less than 0.003 for GMM. This shows that our

algorithm is able to effectively estimate the threshold in less

than 13.4 minutes. Note that our attack is black-box, and the

actual thresholds are accessed only for evaluation.

Attacking the commercial system Talentedsoft [28]. We

also evaluate the effectiveness and efficiency of FAKEBOB

on Talentedsoft, developed by the constitutor of the voiceprint

recognition industry standard of the Ministry of Public Secu-

rity (China). We query this online platform via the HTTP post

(seen as the exposed API). Since Talentedsoft targets Chinese

Mandarin, to fairly test Talentedsoft, we use the Chinese

Mandarin voice database aishell-1 [72]. Both FAR and FRR

of Talentedsoft are 0.15%, tested using 20 speakers and 7,176

voices in total which are randomly chosen from aishell-1.

We enroll 5 randomly chosen speakers from aishell-1 as

targeted speakers, resulting in 5 SV systems. Each of them is

attacked using another 20 randomly chosen speakers and one

randomly chosen voice per speaker. Our attack achieves 100%

ASR within 50 iterations (i.e., 2,500 queries) on average.

Remark that FAKEBOB is an iterative-based method. We can

always set some time slot between iterations or queries so

that such amount of queries do not cause heavy traffic burden

to the server, hence our attack is feasible. This demonstrates

the effectiveness and efficiency of FAKEBOB on commercial

systems that are completely black-box.

C. Transferability

Transferability [7] is the property that some adversarial

samples produced to mislead a model (called source system)

can mislead other models (called target system) even if their

architectures, training datasets, or parameters differ.

Setting. To evaluate the transferability, we regard the pre-

viously built GMM (A) and ivector (B) as source systems

and build another 8 target systems (denoted by C,. . . ,J respec-

tively). C,. . . ,I are ivector systems differing in key parameter

and training dataset, and J is the xvector system. For details

and performance of these systems, refer to Tables XIV and XV
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TABLE V: Experimental results of FAKEBOB when ε = 0.002, where #Iter refers to #Iteration.

Task

System System (Intra-gender attack) System (Inter-gender attack)

ivector GMM ivector GMM ivector GMM

#Iter Time
(s)

SNR
(dB)

ASR
(%) #Iter Time

(s)
SNR
(dB)

ASR
(%) #Iter Time

(s)
SNR
(dB)

ASR
(%) #Iter Tine

(s)
SNR
(dB)

ASR
(%) #Iter Time

(s)
SNR
(dB)

ASR
(%) #Iter Time

(s)
SNR
(dB)

ASR
(%)

CSI 124 2845 30.2 99.0 40 218 29.3 99.0 92 2115 29.3 100.0 25 126 28.8 100.0 146 3340 30.8 98.0 50 278 29.62 98.0

SV 84 2014 31.6 99.0 39 241 31.4 99.0 31 751 31.7 98.0 30 185 31.7 100.0 135 3252 31.6 100.0 48 298 31.2 98.0

OSI 86 2277 31.5 99.0 38 226 31.4 99.0 32 833 31.3 98.0 31 178 31.5 100.0 140 3692 31.6 100.0 45 274 31.2 98.0

Cross 
architecture

Cross 
dataset

Cross 
parameter

A B

B C

A D
A E
A F
A G
A H
A I
A J
B J

A C

B A

B D
B E
B F
B G
B H
B I

Fig. 6: Distribution of transferability attacks

in Appendix. We denote by X → Y the transferability attack

where X is the source system and Y is the target system. The

distribution of the transferability attacks is shown in Fig. 6 in

terms of architecture, training dataset, and key parameters. We

can see that some attacks belong to multiple scenarios. We set

ε = 0.05 and (1) κ = 0.2 (GMM) and κ = 10 (ivector) for the

CSI task, (2) κ = 3 (GMM) and κ = 4 (ivector) for the SV

task, (3) κ = 3 (GMM) and κ = 5 (ivector) for the OSI task.

Remark that κ differs from architectures and tasks due to their

different scoring mechanisms. We fine-tuned the parameter κ
for ASR under the max iteration bound 1,000.

Results. The results of attacking OSI systems are shown in

Table VI. All the attacks (except for B → A) achieve 34%-

68% ASR and 40%-100% UTR. For B → D, B → E,

B → F , B → G, and B → H (all are ivector, but differ

in one key parameter), FAKEBOB achieves 100% ASR and

UTR, indicating that cross architecture reduces transferability

rate. From A → B and A → C (where A is GMM, B and

C are ivector but differ in training data), cross dataset also

reduces transferability rate. The transferability rate of B → A
is the lowest one and less than that of A → B, indicating that

transferring from the architecture ivector (B) to GMM (A)

is more difficult. Compared with A → C (both cross dataset

and architecture), B → C (cross dataset) achieves nearly 20%

more ASR and UTR. This reveals that the larger the difference

between the source and target systems is, the more difficult the

transferability attack is. Due to space limitation, the results of

attacking the CSI and SV systems are shown in Tables XVI

and XVIII in Appendix. We can observe similar results. The

average SNR is similar to the one given in Table VII.

To understand how the value of κ influences the transfer-

ability rate, we conduct B → F attack (OSI task) by fixing

ε = 0.05 and varying κ from 0.5 to 5.0 with step 0.5. In this

experiment, the number of iterations is unlimited. The results

are shown in Fig. 5. Both ASR and UTR increase quickly

with κ, and reach 100% when κ = 4.5. This demonstrates

that increasing the value of κ increases the probability of a

successful transferability attack.

Attacking the commercial system Microsoft Azure [29].
Microsoft Azure is a cloud service platform with the second

largest market share in the world. It supports both the SV and

OSI tasks via HTTP REST API. Unlike Talentedsoft, Azure’s

API only returns the decision (i.e., the predicted speaker) along

with 3 confidence levels (i.e., low, normal and high) instead

of scores, so we attack this platform via transferability. We

enroll 5 speakers from the Test Speaker Set to build an OSI

system on Azure (called OSI-Azure for simplicity). Its FAR

is 0% tested by the Imposter Speaker Set. For each target

speaker, we randomly select 10 source speakers and 2 voices

per source speaker from LibriSpeech, which are rejected by

OSI-Azure. We set ε = 0.05 and craft 100 adversarial voices

on the GMM system, as it produces high tranferability rate in

the above experiment. The ASR, UTR and SNR are 26.0%,

41.0% and 6.8 dB, respectively. They become 34.0%, 57.0%

and 2.2 dB when we increase ε from 0.05 to 0.1.

We also demonstrate FAKEBOB on the SV task of Azure

(SV-Azure) which is text-dependent with 10 supported texts.

We recruited and asked 2 speakers to read each text 10 times,

resulting in 200 voices. For each pair of speaker and text, we

randomly select 3 enrollment voices for both GMM and SV-

Azure, and the FARs of them are 0%. We attack SV-Azure

using 200 adversarial samples crafted from GMM (ε = 0.05,

κ = 3). However, SV-Azure reports “error, too noisy” instead

of “accept” or “reject” for 190 adversarial voices. Among

the other 10 voices, one voice is accepted, leading to 10%

ASR. To our knowledge, this is the first time that SV-Azure

is successfully attacked. As Azure is proprietary without any

publicly available information, it is very difficult to know

the reason why SV-Azure outputs “error, too noisy”. After

comparing the SNR of the 190 voices with the other 10 voices

(8.8 dB vs. 11.5 dB), we suspect that it checks each input and

outputs “error, too noisy” without model classification if the

noise of the input is too large. This check makes SV-Azure

more challenging to attack, but we infer it may also reject

normal voices when the background is noisy in practice.

D. Practicability for Over-the-Air Attack

To simulate over-the-air attack in the physical world, we

first craft adversarial samples by directly interacting with

API of the system (i.e., over the line), then play and record

these adversarial voices via loudspeakers and microphones,

and finally send recorded voices to the system via API to

check their effectiveness. Our experiments are conducted in an

indoor room (length, width, and height are 10, 4, 3.5 meters).
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TABLE VI: Transferability rate (%) for OSI task, where S and T denote source and target systems respectively.

S
T A B C D E F G H I J

ASR UTR ASR UTR ASR UTR ASR UTR ATR UTR ASR UTR ASR UTR ASR UTR ASR UTR ASR UTR
A — — 62.0 64.0 48.0 48.0 55.2 56.9 68.0 68.0 64.0 64.0 52.0 54.0 68.0 68.0 38.0 40.0 34.0 42.0

B 5.0 5.0 — — 67.5 67.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 72.5 75.0 40.0 41.7

TABLE VII: Results of different systems

System
SNR
(dB)

Result (%)
Normal voices Adversarial voices

ivector
CSI 6.6 Accuracy: 100 ASR: 80, UTR: 80

SV 9.8 FAR: 0, FRR: 0 ASR: 76

OSI 7.8 FAR: 4, FRR: 0, OSIER: 0 ASR: 100, UTR: 100

GMM
CSI 6.1 Accuracy: 85 ASR: 90, UTR: 100

SV 7.9 FAR: 0, FRR: 62 ASR: 100

OSI 8.2 FAR: 0, FRR: 65, OSIER: 0 ASR: 100, UTR: 100

Azure OSI 6.8 FAR: 5, FRR: 2, OSIER: 0 ASR: 70, UTR: 70

To thoroughly evaluate FAKEBOB, the over-the-air attacks

vary in systems, devices (loudspeakers and microphones),

distance between loudspeakers and microphones, and acoustic

environments. In total, it covers 26 scenarios. The overview of

different settings is shown in Table XIX in Appendix. We con-

sider all tasks of ivector and GMM, and the OSI-Azure only.

We use the same parameters as in Section V-C, as over-the-air

attack is more practical yet more challenging due to the noise

introduced from both air channel and electronic devices which

probably disrupts the perturbations of adversarial samples. For

OSI-Azure, we use the adversarial voices crafted on GMM in

Section V-C that are successfully transferred to OSI-Azure.

Results of different systems. We use portable speaker (JBL

clip3 [73]) as the loudspeaker, iPhone 6 Plus (iOS) as the

microphone with 1 meter distance between them. We attack all

tasks of ivector and GMM, and the OSI-Azure in a relatively

quiet environment. The results are shown in Table VII. We

can observe that the FRR of GMM SV (resp. OSI) is 62%

(resp. 65%), revealing that GMM is less robust than ivector

for normal voices. FAKEBOB achieves (1) for the CSI task,

90% ASR (i.e., the system classifies the adversarial voice as

the target speaker) and 100% UTR (i.e., the system does not

classify the adversarial voice as the source speaker) on the

GMM, and achieves 80% ASR and 80% UTR on the ivector;

(2) for the SV task, at least 76% ASR; (3) for the OSI task,

100% ASR on both the GMM and ivector; (4) achieves 70%

ASR on the commercial system OSI-Azure.

In terms of SNR, the average SNR is no less than 6.1 dB,

and the average SNR is up to 9.8 dB on the ivector for the

SV task, indicating that the power of the signal is 9.5 times

greater than that of the noise. Moreover, the SNR is much

better than the over-the-air attack in CommanderSong [10].

Results of different devices. For loudspeakers, we use 3

common devices: laptop (DELL), portable speaker (JBL clip3)

and broadcast equipment (Shinco [74]). For microphones, we

use built-in microphones of 2 mobile phones: OPPO (Android)

and iPhone 6 Plus (iOS). We evaluate FAKEBOB against the

OSI task of ivector with 1 meter distance in a relatively quiet

environment. The results are shown in Table VIII.

TABLE VIII: Results of different devices (%), where L and

M denote loudspeakers and microphones respectively.

L
M

iPhone 6 Plus (iOS) OPPO (Android)
Normal voices Adv. voices Normal voices Adv. voices

FAR FRR OSIER ASR UTR FAR FRR OSIER ASR UTR
DELL 10 0 0 100 100 13 6 0 78 80

JBL clip3 4 0 0 100 100 6 0 0 80 80

Shinco 8 5 0 89 91 14 0 0 75 75

We can observe that for any pair of loudspeaker and

microphone, FAKEBOB can achieve at least 75% ASR and

UTR. When JBL clip3 or DELL is the loudspeaker and iPhone

6 Plus is the microphones, FAKEBOB is able to achieve 100%

ASR. When the loudspeaker is fixed, the ASR and UTR of

attacks using IPhone 6 Plus are higher (at least 14% and

16% more) than that of using OPPO. Possible reason is that

the sound quality of iPhone 6 Plus is better than that of

OPPO phone. These results demonstrate the effectiveness of

FAKEBOB on various devices.

Results of different distances. To understand the impact of

the distance between loudspeakers and microphones, we vary

distance from 0.25, 0.5, 1, 2, 4 to 8 meters. We attack the OSI

task of ivector in a relatively quiet environment by using JBL

clip3 as the loudspeaker and iPhone 6 Plus as the microphone.

The results are shown in Table IX. We can observe that

FAKEBOB can achieve 100% ASR and UTR when the distance

is no more than 1 meter. When the distance is increased to 2

meters (resp. 4 meters), ASR and UTR drop to 70% (resp. 40%

and 50%). Although ASR and UTR drop to 10% when the

distance is 8 meters, FRR also increases to 32%. This shows

the effectiveness of FAKEBOB under different distances.

Results of different acoustic environments. We attack the

OSI task of ivector using JBL clip3 and iPhone 6 Plus with 1

meter distance. To simulate different acoustic environments,

we play different types of noises in the background using

Shinco broadcast equipment. Specifically, we select 5 types

of noises from Google AudioSet [75]: white noise, bus noise,

restaurant noise, music noise, and absolute music noise. White

noise is widespread in nature, while bus, restaurant, (absolute)

music noises are representative of several daily life scenarios

where FAKEBOB may be launched. For white noise, we vary

its volume from 45 dB to 75 dB, while the volumes of other

noises are 60 dB. Both adversarial and normal voices are

played at 65 dB on average. The results are shown in Table X.

We can observe that FAKEBOB achieves at least 48% ASR

and UTR when the volume of background noises is no more

than 60 dB no matter the type of the noises. Although both

ASR and UTR decrease with increasing the volume of white

noises, the FRR also increases quickly. This demonstrates the

effectiveness of FAKEBOB in different acoustic environments.

703

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:19 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IX: Results of different distances (%)

Distance (meter) 0.25 0.5 1 2 4 8

Normal
Voices

FAR 4 3 4 6 0 0

FRR 0 0 0 5 10 32

OSIER 0 0 0 0 0 0

Adversarial
Voices

ASR 100 100 100 70 40 10

UTR 100 100 100 70 50 10

TABLE X: Results of different acoustic environments (%)

Environment Quiet
White

(45 dB)

White
(50 dB)

White
(60 dB)

White
(65 dB)

White
(75 dB)

Bus
(60 dB)

Rest.
(60 dB)

Music
(60 dB)

Abs. Music
(60 dB)

Normal
voices

FAR 4 0 6 0 0 10 0 0 0 4

FRR 0 5 12 30 40 97 25 20 10 10

OSIER 0 0 0 0 0 0 0 0 10 0

Adv.
voices

ASR 100 75 70 57 20 2 50 50 66 48

UTR 100 75 70 60 20 2 50 50 67 48

E. Human-Imperceptibility via Human Study

To demonstrate the imperceptibility of adversarial samples,

we conduct a human study on MTurk [30]. The survey is

approved by the Institutional Review Board (IRB) of our

institutes.

Setup of human study. We recruit participants from MTurk

and ask them to choose one of the two tasks and finish the

corresponding questionnaire. We neither reveal the purpose of

our study to the participants, nor record personal information

of participants such as first language, age and region. The

Amazon MTurk has designed Acceptable Use Policy for

permitted and prohibited uses of MTurk, which prohibits bots

or scripts or other automated answering tools to complete

Human Intelligence Tasks [76]. Thus, we argue that the

number of participants can reasonably guarantee the diversity

of participants. The two tasks are described as follows.

• Task 1: Clean or Noisy. This task asks participants to tell

whether the playing voice is clean or noisy. Specifically,

we randomly select 12 original voices and 15 adversarial

voices crafted from other original voices, among which 12

adversarial voices are randomly selected from the voices

which become non-adversarial (called ineffective) when

playing over the air with ε = 0.002 and low confidence,

and the other 3 are randomly selected from the voices which

remain adversarial (called effective) when playing over the

air with ε = 0.1 and high confidence. We ask users to

choose whether a voice has any background noise (The

three options are clean, noisy, and not sure).

• Task 2: Identify the Speaker. This task asks participants to

tell whether the voices in a pair are uttered by the same

speaker. Specifically, we randomly select 3 speakers (2 male

and 1 female), and randomly choose 1 normal voice per

speaker (called reference voice). Then for each speaker,

we randomly select 3 normal voices, 3 distinct adversarial

voices that are crafted from other normal voices of the

same speaker, and 3 normal voices from other speakers. In

summary, we build 27 pairs of voices: 9 pairs are normal
pairs (one reference voice and one normal voice from the

same speaker), 9 pairs are other pairs (one reference voice

and one normal voice from another speaker) and 9 pairs are

adversarial pairs (one reference voice and one adversarial

voice from the same speaker). Among 9 adversarial pairs,

6 pairs contain effective adversarial samples when playing

over the air, and 3 pairs do not. We ask the participants

to tell whether the voices in each pair are uttered by the

same speaker (The three options are same, different, and

not sure).

To ensure the quality of our questionnaire and validity of

our results, we filter out the questionnaires that are randomly

chosen by participants. In particular, we set three simple

questions in each task. For task 1, we insert three silent voices

as a concentration test. For task 2, we insert three pairs of

voices, where each pair contains one male voice and one

female voice as a concentration test. Only when all of them

are correctly answered, we regard it as a valid questionnaire,

otherwise, we exclude it.

Results of human study. We finally received 135 question-

naires for task 1 and 172 questionnaires for task 2, where

27 and 11 questionnaires are filtered out as they failed to

pass our concentration tests. Therefore, there are 108 valid

questionnaires for task 1 and 161 valid questionnaires for task

2. The results of the human study are shown in Fig. 7.

For task 1, as shown in Fig. 7(a), 10.7% of participants

heard noise on normal voices, while 20.2% and 84.8% of

participants heard noise on ineffective and effective adversarial

voices (when played over-the-air) respectively. We can see that

78.8% of participants still believe that ineffective voices are

clean. For effective voices, we found that 84.8% is comparable

to the recent white-box adversarial attack (i.e., 83%) that

tailors to craft imperceptible voices against speech recognition

systems [20]. (We are not aware of any other adversarial

attacks against SRSs that have done such human study.)

For task 2 which is more interesting (in Fig. 7(b)), 86.5%

of participants believe that voices in each other pair are

uttered by different speakers, indicating the quality of col-

lected questionnaires. For the adversarial pairs, 54.6% of

participants believe that voices in each pair are uttered by

the same speaker, very close to the baseline 53.7% of normal
pairs, indicating that humans cannot differentiate the speakers

of the normal and adversarial voices. The prior work [14]

conducted an ABX testing on adversarial samples crafted by

white-box attacks against SV systems. The ABX test first

provides to users two voices A and B, each being either

the original (reconstructed) voice or an adversarial voice; then

provides the third voice X which was randomly chosen from

{A,B}; finally asks the users to decide if X is A or B. The

ABX testing of [14] shows that 54% of participants correctly

classified the adversarial voices, which is very close to ours.

For the adversarial pairs which contain ineffective adversarial

voices, 64.9% of participants believed that the two voices are

from the same speakers, much greater than the baseline 53.7%,

thus more imperceptible. For the adversarial pairs which

contain effective adversarial voices, 54.0% of participants can

definitely differentiate the speaker, not too larger than the

baseline 42.2% of normal pairs.
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(a) Task 1: clean or noisy (b) Task 2: identify the speaker

Fig. 7: Results of human study, where air (resp. non air)

denotes voices that are effective (resp. ineffective) for over-

the-air attack

The results unveil that the adversarial voices crafted by

FAKEBOB can make systems misbehave (i.e., making a deci-

sion that the adversarial voice is uttered by the target speaker),

while most of ineffective adversarial samples are classified

clean and cannot be differentiated by ordinary users, and the

results of effective ones are comparable to existing related

works. Hence, our attack is reasonably human-imperceptible.

F. Robustness of FAKEBOB against Defense Methods

As mentioned in Section III-B, we study four defense

methods: local smoothing, quantization, audio squeezing and

temporal dependency detection. We evaluate on the OSI task

of the GMM system unless explicitly stated using 100 seed

voices. The FRR, FAR, ASR and UTR of the system without

defense is 4.2%, 11.2%, 99% and 99%, respectively. We

consider two settings: (S1) crafting adversarial voices on

the system without defense and attacking the system with

defense, and (S2) directly attacking the system with defense.

S1 follows from CommanderSong [10]. An effective defense

method should be able to mitigate the perturbation or detect the

adversarial voices in S1. Thus, we will use the UTR metric. In

S2, an effective defense method should increase the overhead

of the attack and decrease the attack success rate, thus we will

use the ASR metric. We set ε = 0.002, a very weak attacker

capacity. Increasing ε will make FAKEBOB more powerful.

We found that the local smoothing can increase attack

cost, but is ineffective in terms of ASR, audio squeezing is

ineffective in terms of both attack cost and ASR, while the

other two are not suitable for defending our attack. Due to

space limitation, details are given in Appendix E.

VI. DISCUSSION OF THE POSSIBLE ARM RACE

This section discusses the potential mitigation of our attacks

and possible advanced attacks.

Mitigation of FAKEBOB. We have demonstrated that four

defense methods have limited effects on FAKEBOB although

some of them are reported promising in the speech recognition

domain. This reveals that more effective defense methods are

needed to mitigate FAKEBOB. We discuss several possible

defense methods as follows.

Various liveness detection methods have been proposed to

detect spoofing attacks on SRSs. Such methods detect attacks

by exploiting the different physical characteristics of the voices

generated by the human speech production system (i.e., lungs,

vocal cords, and vocal tract) and electronic loudspeaker. For

instance, Shiota et al. [77] use pop noise caused by human

breath, VoiceLive [78] leverages time-difference-of-arrival of

voices to the receiver, and VoiceGesture [79] leverages the

unique articulatory gesture of the user. Adversarial voices also

need to be played via loudspeakers, hence liveness detection

could be possibly used to detect them. An alternative detec-

tion method is to train a detector using adversarial voices

and normal voices. Though promising in image recognition

domain [80], it has a very high false-positive rate and does

not improve the robustness when the adversary is aware of this

defense [81]. Another scheme to mitigate adversarial images

is input transformation such as image bit-depth reduction

and JPEG compression [82]. We could mitigate adversarial

voices by leveraging input transformations such as bit-depth

reduction and MP3 compression. However, Athalye et al. [83]

have demonstrated that input transformation on images can

be easily circumvented by strong attacks such as Backward

Pass Differentiable Approximation. We conjecture that bit-

depth reduction and MP3 compression may become ineffective

for high-confidence adversarial voices.

Finally, one could also improve the security of SRSs by

using a text-dependent system and requiring users to read

dynamically and randomly generated sentences. By doing so,

the adversary has to attack both the speaker recognition and

the speech recognition, hence incurring attack costs. If the set

of phrases to be uttered is relatively small, we could also attack

the system by iteratively querying the target system using the

voice corresponding to the generated phrase. While our attack

will fail when the set of phrases to be uttered is very large or

even infinite. However, this also brings the challenge for the

recognition system, as the training data may not be able to

cover all the possible normal phrases and voices.

We will study the above methods [77], [78], [79], [82],

[83], [84], [85], [86] for adversarial attacks in future. We next

discuss possible methods on improving adversarial attacks.

Possible advanced attacks. For a system that outputs the

decision result and scores, FAKEBOB can directly craft ad-

versarial voices via interacting with it. However, for a system

that only outputs the decision result, we have to attack it

by leveraging transferability. When the gap between source

and target systems is larger, the transferability rate is limited.

One possible solution to improve FAKEBOB is to leverage the

boundary attack, which is proposed to attack decision-only

image recognition systems by Brendel et al. [87].

Our human study shows that our attack is reasonably

human-imperceptible. However, many of effective adversarial

voices are still noisier than original voices (human study task

1), and some of effective adversarial voices can be differenti-

ated from different speakers by ordinary users (human study

task 2), there still has space for improving imperceptibility

in future. One possible solution is to build a psychoacoustic

model and limit the maximal difference between the spectrum

of the original and adversarial voices to the masking threshold
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(hearing threshold) of human perception [88], [20].

VII. RELATED WORK

The security issues of intelligent voice systems have been

studied in the literature. In this section, we discuss the most

related work on attacks over the intelligent voice systems, and

compare them with FAKEBOB.

Adversarial voice attacks. Gong et al. [13] and Kreuk et

al. [14] respectively proposed adversarial voice attacks on

SRSs in the white-box setting, by leveraging the Fast Gradient

Sign Method (FGSM) [22]. The attack in [13] addresses

DNN-based gender recognition, emotion recognition and CSI

systems, while the attack in [14] addresses a DNN-based

SV system. Compared to them: (1) Our attack FAKEBOB is

black-box and more practical. (2) FAKEBOB addresses not

only the SV and CSI, but also the more general OSI task.

(3) We demonstrate our attack on ivector, GMM and DNN-

based systems in the popular open-source platform Kaldi. (4)

FAKEBOB is effective on the commercial systems, even when

playing over the air, which was not considered in [13], [14].
In a concurrent work, Abdullah et al. [60] proposed a

poisoning attack on speaker and speech recognition systems,

that is demonstrated on the OSI-Azure. There are three key

differences: (1) Their attack crafts an adversarial voice from

a voice uttered by an enrolled speaker A such that the

adversarial voice is neither rejected nor recognized as the

speaker A. Thus, their attack neither can choose a specific

source speaker nor a specific target speaker to be recognized

by the system, consequently, they cannot launch targeted attack

or attacks against the SV task. Whereas our attack goes beyond

their attack. (2) They craft adversarial voice by decomposing

and reconstructing an input voice, hence, achieved a limited

untargeted success rate and cannot be adapted to launch more

interesting and powerful targeted attacks. (3) We evaluate over-

the-air attacks in the physical world, but they did not.
We cannot compare the performance (i.e., effectiveness

and efficiency) of our attack with the three related works

above [13], [14], [60] because all of them are not available.

We are the first considering the threshold θ in adversarial

attack. Adversarial attacks on speech recognition systems also

have been studied [11], [9], [89]. Carlini et al. [9] attacked

DeepSpeech [90] by crafting adversarial voices in the white-

box setting, but failed to attack when playing over the air. In

the black-box setting, Rohan et al. [11] combined a genetic

algorithm with finite difference gradient estimation to craft

adversarial voices for DeepSpeech, but achieved a limited

success rate with strict length restriction over the voices.

Alzantot et al. [89] presented the first black-box adversarial

attack on a CNN-based speech command classification model

by exploiting a genetic algorithm. However, due to the dif-

ference between speaker recognition and speech recognition,

these works are orthogonal to our work and cannot be applied

to ivector and GMM based SRSs.

Other types of voice attacks. Other types of voice attacks

include hidden voice attack (both against speech and speaker

recognition) and spoofing attack (against speaker recognition).

Hidden voice attack aims to embed some information (e.g.,

command) into an audio carrier (e.g., music) such that the

desired information is recognized by the target system without

catching victims’ attention. Abdullah et al. [91] proposed

such an attack on speaker and speech recognition systems.

There are two key differences: (1) Based on characteristics of

signal processing and psychoacoustics, their attack perturbed

a sample uttered by an enrolled speaker such that it is still

correctly classified as the enrolled speaker by the target system

but becomes incomprehensible to human listening. While our

attack perturbed a sample uttered by an arbitrary speaker
such that it is misclassified as a target speaker (targeted

attack) or another enrolled speaker (untargeted attack) but the

perturbation is imperceptible to human listening. This means

their attack addresses a different attack scenario compared with

ours. (2) They did not demonstrate over-the-air attack on SRSs

and their tool is not available, hence it is unclear how effective

it is on SRSs. DolphinAttack [92], CommanderSong [10] and

the work done by Carlini et al. [34] proposed hidden voice

attacks on SRSs. Carlini et al. launched both black-box (i.e.,

inverse MFCC) and white-box (i.e., gradient decent) attacks

on GMM based speech recognition systems. DolphinAttack

exploited vulnerabilities of microphones and employed the

ultrasound as the carrier of commands to craft inaudible

voices. However, it can be easily defended by filtering out

the ultrasound from voices. CommanderSong launched white-

box attacks by exploiting a gradient descent method to embed

commands into music songs.

Another attack type on SRSs is spoofing attack [93] such

as mimic [94], replay [95], [96], recorder attack [97], [96],

voice synthesis [98], and voice conversion [99], [100], [101],

[96] attacks. Different from adversarial attack [14], [102],

spoofing attack aims at obtaining a voice such that it is

correctly classified as the target speaker by the system, and

also sound like the target speaker listened by ordinary users.

When anyone familiar with the victim (including the victim)

cannot hear the attack voice, both spoofing and adversarial

attacks can be launched. However, if someone familiar with the

victim (including the victim) can hear the attack voice, he/she

may detect the spoofing attack. Whereas, adversarial attack

could be launched in this setting as discussed in Section II-B.

VIII. CONCLUSION

In this paper, we conducted the first comprehensive and

systematic study of adversarial attack on SRSs in a practical

black-box setting, by proposing a novel practical adversarial

attack FAKEBOB. FAKEBOB was thoroughly evaluated in 16

attack scenarios. FAKEBOB can achieve 99% targeted attack

success rate on both open-source and the commercial systems.

We also demonstrated the transferability of FAKEBOB on

Microsoft Azure. When played over the air in the physical

world, FAKEBOB is also effective. Our findings reveal the

security implications of FAKEBOB for SRSs, calling for more

robust defense methods to better secure SRSs against such

practical adversarial attacks.
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APPENDIX

A. Comparison of our FAKEBOB and PSO-based Method

W compare our attack FAKEBOB over a PSO-based method.

We reduce the finding of an adversarial sample as an op-

timization problem (cf. §IV-A), then solve the optimization

problem via the PSO algorithm. PSO solves the optimization

problem by imitating the behaviour of a swarm of birds [103].

Each particle is a candidate solution, and in each iteration, the

particle updates itself by the weighted linear combination of

three parts, i.e., inertia, local best solution and global best

solution. The related weights are initial inertia factor winit,

final inertia factor wend, acceleration constant c1 and c2.

We implement a PSO-based attack following the algorithm

of Sharif et al. [63] which is used to fool face recognition

systems. After fine-tuning the above hyper-parameters, we

conduct the experiment using the PSO-based method with 50

particles for a maximum of 35 epochs, and we set the iteration
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TABLE XI: Our attack FAKEBOB vs. the PSO-based method, where [S(x0)]t denotes the initial score of input voice of the

speaker t, and ∗ denotes that only one adversarial attack succeeds.
−∞ < [S(x0)]t < ∞ [S(x0)]t ≤ −0.5 −0.5 < [S(x0)]t ≤ 0 0 < [S(x0)]t ≤ 0.5 0.5 < [S(x0)]t ≤ 1 1 < [S(x0)]t ≤ 1.5
FAKEBOB PSO FAKEBOB PSO FAKEBOB PSO∗ FAKEBOB PSO FAKEBOB PSO FAKEBOB PSO

#Iteration 86 136 187 — 84 72 61 147 17 297 4 24

Time (s) 2277 2524 4409 — 1947 1311 1384 2715 357 5517 77 449

SNR (dB) 31.5 31.9 31.4 — 30.5 22.8 31.5 31.6 32.4 32.3 31.8 32.2

ASR (%) 99.0 33.0 96.3 0.0 100.0 5.3 100.0 17.6 100.0 60.0 94.1 100.0

TABLE XII: Experimental results of FAKEBOB on xvector system

Task
All Intra-gender attack Inter-gender attack

Targeted Attack Untargeted Attack Targeted Attack Targeted Attack

#Iter Time
(s)

SNR
(dB)

ASR
(%) #Iter Time

(s)
SNR
(dB)

ASR
(%) #Iter Time

(s)
SNR
(dB)

ASR
(%) #Iter Time

(s)
SNR
(dB)

ASR
(%)

CSI 117 575 30.1 100.0 73 499 29.6 100.0 89 444 29.3 100 135 662 30.7 100.0

SV 92 702 31.8 100.0 - - - - 44 340 31.9 100.0 136 1035 31.7 100.0

OSI 95 995 32.0 100.0 26 171 31.5 100.0 51 601 32.0 100.0 138 1380 32.0 100.0

limitation of each epoch to 30, winit to 0.9, wend to 0.1, c1
to 1.4961 and c2 to 1.4961. The experiment is conducted on

the ivector system for the OSI task.
The results are shown in Table XI. For comparison purposes,

we also report the results of our attack FAKEBOB in Table XI.

Overall, the PSO-based method achieves 33% targeted attack

success rate (ASR), only one-third of FAKEBOB, indicating

that FAKEBOB is much more effective than the PSO-based

method. Specifically, the PSO-based method is less effective

for input voices whose initial scores are low.

• When [S(x0)]t ≤ −0.5, the PSO-based method fails to

launch attack for all the voices.

• When −0.5 < [S(x0)]t ≤ 0 and 0 < [S(x0)]t ≤ 0.5, the

ASR is very low, i.e., 5.3% and 17.6%, respectively.

Whereas our attack FAKEBOB is more effective no matter the

initial scores of input voices.
In terms of efficiency, FAKEBOB takes less number of

iterations and execution time than the PSO-based method,

except for the case −0.5 < [S(x0)]t ≤ 0 on which the

PSO-based method is able to launch a successful attack for

one voice only. Specifically, the higher the initial score of

the input voice is, the more efficient of our attack FAKEBOB

is compared to the PSO-based method. For instance, when

0.5 < [S(x0)]t ≤ 1, the number of iterations (resp. execution

time) of the PSO-based method is 17 times (resp. 15 times)

larger than the one of FAKEBOB.
In summary, the experimental results demonstrate that our

attack FAKEBOB is much more effective and efficient than the

PSO-based method.

B. 16 Attack Scenarios
All of following combinations are evaluated in this work,

where D.&S. denotes decision and scores.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
targeted

untargeted

)
×

(
intra-gender
inter-gender

)
× API ×

⎛
⎝ OSI

CSI
SV

⎞
⎠× D.&S.

+

targeted ×
⎛
⎝ OSI

CSI
SV

⎞
⎠× API × decision-only

+

targeted ×
⎛
⎝ OSI

CSI
SV

⎞
⎠× over-the-air × D.&S.

+
targeted × OSI × over-the-air × decision-only

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C. Results of Tuning the Parameter ε

Table XIII shows the results of tuning the parameter ε on

both ivector and GMM systems for the CSI task. To choose

a suitable ε, we need to trade off the imperceptibility and

the attack cost. Smaller ε contributes to less perturbation

(i.e, higher SNR), but also give rise to the attack cost (i.e,

more iterations and execution time and lower success rate).

We found that 0.002 is a more suitable value of ε for two

reasons: (1) compared with other ε values, the average SNR

of adversarial voices when ε = 0.002 is higher, indicating that

ε = 0.002 introduces less perturbation, while the success rate

of 0.002 is merely 1% lower than that of other ε values. (2)

ε = 0.001 introduce less perturbation than ε = 0.002, but the

success rate of ε = 0.001 drops to 41% for ivector and 87% for

GMM, 58% and 12% lower than that of ε = 0.002. Moreover,

the attack cost increases more sharply when decreasing ε from

0.002 to 0.001 compared with decreasing ε from 0.003 to

0.002. That is, the number of iterations and execution time of

ε = 0.002 are 1.6 times and 1.4 times than that of ε = 0.003,

while the number of iterations and execution time of ε = 0.001
are 2.2 times and 2.4 times than that of ε = 0.002.

TABLE XIII: Results of tuning ε on the CSI task

ε
ivector GMM

#Iter Time
(s)

SNR
(dB)

ASR
(%)

#Iter Time
(s)

SNR
(dB)

ASR
(%)

0.05 18 422 12.0 100 18 91 16.7 100

0.01 23 549 16.2 100 16 81 19.1 100

0.005 44 1099 21.8 100 19 102 22.3 100

0.004 56 1423 23.8 100 21 104 24.0 100

0.003 76 2059 26.3 100 27 124 26.1 100

0.002 124 2845 30.2 99 40 218 29.3 99

0.001 276 6738 36.4 41 106 551 35.7 87

D. Experiment results of FAKEBOB on xvector system

We demonstrate the effectiveness and efficiency of FAKE-

BOB against a state-of-the-art DNN-based SRS [26], called

xvector system, in which xvector is extracted from DNN

709

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 04:54:19 UTC from IEEE Xplore.  Restrictions apply. 



TABLE XIV: Details of source and target systems for transferability attacks, where DF denotes Dimension of feature, FL/FS

denotes Frame length/Frame step, 	GC denotes the number of gaussian components, DV denotes Dimension of ivector (xvector),

and xvector is a DNN-based SRS from [26].
System ID A B C D E F G H I J

Architecture GMM ivector ivector ivector ivector ivector ivector ivector ivector xvector
Training set Train-1 Set Train-1 Set Train-2 Set Train-1 Set Train-1 Set Train-1 Set Train-1 Set Train-1 Set Train-1 Set Train-1 Set

Feature MFCC MFCC MFCC PLP MFCC MFCC MFCC MFCC PLP MFCC

DF 24×3 24×3 24×3 24×3 13×3 24×3 24×3 24×3 13×3 30
FL/FS (ms) 25/10 25/10 25/10 25/10 25/10 50/10 25/10 25/10 50/10 25/10

�GC 2048 2048 2048 2048 2048 2048 1024 2048 1024 –
DV – 400 400 400 400 400 400 600 600 512

TABLE XV: The performance of the target systems C,...,J

Task
System C D E F G H I J

CSI Accuracy 99.8% 99.4% 99.2% 99.8% 99.6% 99.8% 99.2% 99.2%

SV FAR 10.0% 9.8% 9.4% 10.0% 11.2% 9.8% 10.4% 10.2%
FRR 1.2% 0.6% 1.6% 1.2% 0.8% 1.0% 2.2% 0.8%

OSI
FAR 9.1% 8.8% 10.9% 9.2% 8.5% 8.1% 11.0% 7.7%
FRR 1.4% 0.6% 1.6% 1.4% 1.2% 0.8% 2.2% 0.8%

OSIER 0.0% 0.2% 0.2% 0.0% 0.2% 0.0% 0.4% 0.2%

TABLE XVI: Results of transferability attack for CSI task (%), where S denotes source system and T denotes target system.

S
T A B C D E F G H I J

ASR UTR ASR UTR ASR UTR ASR UTR ATR UTR ASR UTR ASR UTR ASR UTR ASR UTR ASR UTR
A — — 76.9 76.9 89.7 89.7 64.1 71.8 87.2 89.7 84.6 84.6 76.9 87.2 76.9 84.6 48.7 69.2 28.2 38.5

B 30.7 88.0 — — 93.3 96.0 100.0 100.0 100.0 100.0 100.0 100.0 88.0 89.3 100.0 100.0 73.3 80.0 25.3 38.7

TABLE XVIII: Results of transferability attack for SV task

(%), where S: source system and T: target system.

S
T A B C D E F G H I J

ASR ASR ASR ASR ASR ASR ASR ASR ASR ASR
A — 57.9 49.1 54.4 64.9 61.4 52.6 66.7 36.8 33.3

B 5.0 — 67.5 100.0 100.0 100.0 100.0 100.0 80.0 38.3

TABLE XVII: Results of FAKEBOB when θ is tuned based

on Equal Error Rate. The Equal Error Rate and corresponding

threshold θ for ivector (resp. GMM) are 2.2% and 1.75 (resp.

5.8% and 0.103), and ε = 0.002.

Task ivector GMM

#Iter Time
(s)

SNR
(dB)

ASR
(%) #Iter Time

(s)
SNR
(dB)

ASR
(%)

SV 120 2297 31.7 99.0 46 273 31.4 99.0
OSI 125 2786 32.1 99.0 54 334 31.9 99.0

networks. We use the pre-trained xvector model from SITW

recipe of Kaldi and construct OSI, CSI and SV systems.

We use the same settings as in Section V-B. The baseline

performance of the resulting systems is shown in Column J

of Table XV. Moreover, we also conduct untargeted attacks

against these systems. The results are shown in Table XII. Our

attack is able to achieve 100% ASR, indicating FAKEBOB is

also effective and efficient against DNN-based SRSs.

E. Robustness of FAKEBOB against Defense Methods
Local smoothing. It mitigates attacks by applying the mean,

median or gaussian filter to the waveform of a voice. Based

on the results in [31], we use the median filter. A median

filter with kernel size k (must be odd) replaces each audio

element xk by the median of k values [xk− k−1
2

, . . . , xk, . . . ,

xk+ k−1
2

]. In S1, we vary k from 1 to 19 with step 2. The

results are shown in Fig. 8a. We can see that the defense

is ineffective against high-confidence (hc) adversarial voices.

For low-confidence (hc) adversarial voices, though the UTR

drops from 99% to nearly 0%, the minimal FRR of normal

voices increases to 35%, significantly larger than the baseline

4.2%. We also tested median with k = 3 on ivector. The

FRR of normal voices only increases by 7%. It seems that

ivector is more robust than GMM. In S2, we fix k=7 as
[31] did. The results are shown in Fig. 9a. Although the

median filter increases the attack cost slightly, FAKEBOB can

quickly achieve 90% ASR using 250 max iteration bound,

where the baseline is 90. To solve other few voices (9%), the

max iteration bound should be 15,000. Though ivector is more

robust than GMM, the similar result is observed (cf. Fig. 9b).

We conclude that the local smoothing (at least median filter)

can increase attack cost, but is ineffective in terms of ASR.

(a) Median filter (b) Audio squeezing

Fig. 8: Results of median filter and audio squeezing in S1,

where UTR-lc denotes UTR of low-confidence adversarial

voices (κ=0), and UTR-hc denotes UTR of high-confidence

adversarial voices (0 < κ < 5).

Audio squeezing. It down-samples voices and applies signal

recovery to disrupt perturbations. In S1, we vary τ (the ratio

between new and original sampling frequency) from 0.1 to
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TABLE XIX: Settings of the over-the-air attacks, where x meter (y dB) means when the microphone is kept x meters away

from the loudspeaker, the average volume of voices reaches y dB, and white noise (z dB) means the acoustic environment is

degraded with a white-noise generator playing at z dB.
System Loudspeaker Microphone Distance Acoustic Environment

Different
Systems

GMM OSI/CSI/SV
ivector OSI/CSI/SV

Azure OSI
JBL clip3 portable speaker IPhone 6 Plus (iOS) 1 meter (65 dB) relatively quiet

Different
Devices ivector OSI

DELL laptop
JBL clip3 portable speaker
Shinco brocast equipment

IPhone 6 Plus (iOS)
OPPO (Android) 1 meter (65 dB) relatively quiet

Different
Distances ivector OSI JBL clip3 portable speaker IPhone 6 Plus (iOS)

0.25 meter (70 dB)
0.5 meter (68 dB)
1 meter (65 dB)
2 meters (62 dB)
4 meters (60 dB)
8 meters (55 dB)

relatively quiet

Different
Acoustic

Environments
ivector OSI JBL clip3 portable speaker IPhone 6 Plus (iOS) 1 meter (65 dB)

white noise (45/50/60/65/75 dB)
bus noise (60 dB)

restaurant noise (60 dB)
music noise (60 dB)

absolute music noise (60 dB)

(a) GMM system (b) ivector system

Fig. 9: Attack cost of median filter and audio squzzeing

1.0, the same as [10]. The results are shown in Fig. 8b. We

can observe that when τ = 0.9, (1) the FRR of normal

voices is 6%, close to the baseline 4.2%, (2) the UTR of

the low-confidence adversarial voices is 17%, smaller than the

baseline 99%, (3) however, the UTR of the high-confidence

adversarial voices is the same as the baseline. In S2, we fix

τ=0.5 as [31] did. The results are shown in Fig. 9a and Fig. 9b.

Unexpectedly, the defense decreases the overhead of attack and

increases ASR. For instance, FAKEBOB achieves 100% ASR

using 200 max iteration bound on the system with defense,

while can only achieve 99% ASR even using 16,000 max

iteration bound on the unsecured system. It is possibly because

audio squeezing (τ = 0.5) sacrifices the performance of SRSs.

We conclude that the audio squeezing is ineffective against

FAKEBOB in terms of both attack cost and ASR.

Quantization. It rounds the amplitude of each sample point of

a voice to the nearest integer multiple of factor q to mitigate

the perturbation. In S1, we vary q from 128, 256, 512 to 1024

as [31] did. However, the system did not output any result on

adversarial and normal voices. An in-depth analysis reveals

that all the frames of voices are regarded as unvoiced frame

by the Voice Activity Detection (VAD) [104] component. This

demonstrates that quantization is not suitable for defending

against FAKEBOB. Due to this, we do not consider S2.

Temporal dependency Detection. For a given voice v, sup-

pose a speech-to-text system produces text t(v). Given a
parameter 0 ≤ k ≤ 1, let vk (resp. tk) denote the k percent

prefix of the voice v (resp. text t). The temporal dependency

detection uses the distance between the texts t(v)k and t(vk)
to determine whether v is an adversarial voice, as the distance

of adversarial voices is greater than that of normal voices.

We use this method to check adversarial voices crafted by

FAKEBOB using k= 4
5 and the Character Error Rate distance

metric, the best one in [31]. We do not test different values of

k as the result will not vary too much as mentioned in [31]. We

use Baidu’s DeepSpeech model as the speech-to-text system,

which is implemented by Mozilla on Github [105] with more

than 13k stars.

Fig. 10: ROC curves of Temporal Dependence Detection

Fig. 10 shows the ROC curves of this method distinguishing

low-confidence and high-confidence adversarial samples. It

obtains 50% true positive rate at about 50% false positive rate.

The AUC values are 46.7% and 50.5%, close to random guess,

indicating it fails to detect adversarial samples. This is because

FAKEBOB does not alter the transcription of the voices, thus

the temporal dependency is preserved. Due to this, we do not

consider S2.
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